Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

TYC 2578-167-1


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Bayesian inference of stellar parameters and interstellar extinction using parallaxes and multiband photometry
Astrometric surveys provide the opportunity to measure the absolutemagnitudes of large numbers of stars, but only if the individualline-of-sight extinctions are known. Unfortunately, extinction is highlydegenerate with stellar effective temperature when estimated frombroad-band optical/infrared photometry. To address this problem, Iintroduce a Bayesian method for estimating the intrinsic parameters of astar and its line-of-sight extinction. It uses both photometry andparallaxes in a self-consistent manner in order to provide anon-parametric posterior probability distribution over the parameters.The method makes explicit use of domain knowledge by employing theHertzsprung-Russell Diagram (HRD) to constrain solutions and to ensurethat they respect stellar physics. I first demonstrate this method byusing it to estimate effective temperature and extinction from BVJHKdata for a set of artificially reddened Hipparcos stars, for whichaccurate effective temperatures have been estimated from high-resolutionspectroscopy. Using just the four colours, we see the expected strongdegeneracy (positive correlation) between the temperature andextinction. Introducing the parallax, apparent magnitude and the HRDreduces this degeneracy and improves both the precision (reduces theerror bars) and the accuracy of the parameter estimates, the latter byabout 35 per cent. The resulting accuracy is about 200 K in temperatureand 0.2 mag in extinction. I then apply the method to estimate theseparameters and absolute magnitudes for some 47 000 F, G, K Hipparcosstars which have been cross-matched with Two-Micron All-Sky Survey(2MASS). The method can easily be extended to incorporate the estimationof other parameters, in particular metallicity and surface gravity,making it particularly suitable for the analysis of the 109stars from Gaia.

Observations of Binary Stars with the Differential Speckle Survey Instrument. II. Hipparcos Stars Observed in 2010 January and June
The results of 497 speckle observations of Hipparcos stars and selectedother targets are presented. Of these, 367 were resolved into componentsand 130 were unresolved. The data were obtained using the DifferentialSpeckle Survey Instrument at the WIYN 3.5 m Telescope. (The WIYNObservatory is a joint facility of the University of Wisconsin-Madison,Indiana University, Yale University, and the National Optical AstronomyObservatories.) Since the first paper in this series, the instrument hasbeen upgraded so that it now uses two electron-multiplying CCD cameras.The measurement precision obtained when comparing to ephemeris positionsof binaries with very well known orbits is approximately 1-2 mas inseparation and better than 0fdg6 in position angle. Differentialphotometry is found to be in very good agreement with Hipparcos measuresin cases where the comparison is most relevant. We derive preliminaryorbits for two systems.

Speckle Interferometry of New and Problem Hipparcos Binaries. II. Observations Obtained in 1998-1999 from McDonald Observatory
The Hipparcos satellite made measurements of over 9734 known doublestars, 3406 new double stars, and 11,687 unresolved but possible doublestars. The high angular resolution afforded by speckle interferometrymakes it an efficient means to confirm these systems from the ground,which were first discovered from space. Because of its coverage of adifferent region of angular separation-magnitude difference(ρ-Δm) space, speckle interferometry also holds promise toascertain the duplicity of the unresolved Hipparcos ``problem'' stars.Presented are observations of 116 new Hipparcos double stars and 469Hipparcos ``problem stars,'' as well as 238 measures of other doublestars and 246 other high-quality nondetections. Included in these areobservations of double stars listed in the Tycho-2 Catalogue andpossible grid stars for the Space Interferometry Mission.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Corona Borealis
Right ascension:15h56m31.88s
Declination:+37°21'39.7"
Apparent magnitude:8.951
Distance:224.215 parsecs
Proper motion RA:-23.8
Proper motion Dec:-7
B-T magnitude:10.312
V-T magnitude:9.064

Catalogs and designations:
Proper Names   (Edit)
TYCHO-2 2000TYC 2578-167-1
USNO-A2.0USNO-A2 1200-07699989
HIPHIP 78077

→ Request more catalogs and designations from VizieR