Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

HD 203413


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Spectroscopic parameters for 451 stars in the HARPS GTO planet search program. Stellar [Fe/H] and the frequency of exo-Neptunes
To understand the formation and evolution of solar-type stars in thesolar neighborhood, we need to measure their stellar parameters to highaccuracy. We present a catalogue of accurate stellar parameters for 451stars that represent the HARPS Guaranteed Time Observations (GTO)“high precision” sample. Spectroscopic stellar parameterswere measured using high signal-to-noise (S/N) spectra acquired with theHARPS spectrograph. The spectroscopic analysis was completed assumingLTE with a grid of Kurucz atmosphere models and the recent ARES code formeasuring line equivalent widths. We show that our results agree wellwith those ones presented in the literature (for stars in common). Wepresent a useful calibration for the effective temperature as a functionof the index color B-V and [Fe/H]. We use our results to study themetallicity-planet correlation, namely for very low mass planets. Theresults presented here suggest that in contrast to their joviancouterparts, neptune-like planets do not form preferentially aroundmetal-rich stars. The ratio of jupiter-to-neptunes is also an increasingfunction of stellar metallicity. These results are discussed in thecontext of the core-accretion model for planet formation.Based on observations collected at La Silla Observatory, ESO, Chile,with the HARPS spectrograph at the 3.6-m telescope (072.C-0488(E)). FullTables 1 and 3 are only available in electronic form at the CDS vianonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/487/373

Contributions to the Nearby Stars (NStars) Project: Spectroscopy of Stars Earlier than M0 within 40 pc-The Southern Sample
We are obtaining spectra, spectral types, and basic physical parametersfor the nearly 3600 dwarf and giant stars earlier than M0 in theHipparcos catalog within 40 pc of the Sun. Here we report on resultsfor 1676 stars in the southern hemisphere observed at Cerro TololoInter-American Observatory and Steward Observatory. These resultsinclude new, precise, homogeneous spectral types, basic physicalparameters (including the effective temperature, surface gravity, andmetallicity [M/H]), and measures of the chromospheric activity of ourprogram stars. We include notes on astrophysically interesting stars inthis sample, the metallicity distribution of the solar neighborhood, anda table of solar analogs. We also demonstrate that the bimodal nature ofthe distribution of the chromospheric activity parameterlogR'HK depends strongly on the metallicity, andwe explore the nature of the ``low-metallicity'' chromosphericallyactive K-type dwarfs.

K dwarfs and the chemical evolution of the solar cylinder
K dwarfs have lifetimes older than the present age of the Galactic disc,and are thus ideal stars for investigating the chemical evolution of thedisc. We have developed several photometric metallicity indicators for Kdwarfs, based on a sample of accurate spectroscopic metallicities for 34disc and halo G and K dwarfs. The photometric metallicities lead us todevelop a metallicity index for K dwarfs based only on their position inthe colour-absolute-magnitude diagram. Metallicities have beendetermined for 431 single K dwarfs drawn from the Hipparcos catalogue,selecting the stars by absolute magnitude and removing multiple systems.The sample is essentially a complete reckoning of the metal content innearby K dwarfs. We use stellar isochrones to mark the stars by mass,and select a subset of 220 of the stars, which is complete within anarrow mass interval. We fit the data with a model of the chemicalevolution of the solar cylinder. We find that only a modest cosmicscatter is required to fit our age-metallicity relation. The modelassumes two main infall episodes for the formation of the halo-thickdisc and thin disc, respectively. The new data confirm that the solarneighbourhood formed on a long time-scale of the order of 7 Gyr.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Indus
Right ascension:21h24m15.13s
Declination:-58°41'32.3"
Apparent magnitude:8.684
Distance:25.387 parsecs
Proper motion RA:-103
Proper motion Dec:-19.6
B-T magnitude:10.024
V-T magnitude:8.795

Catalogs and designations:
Proper Names   (Edit)
HD 1989HD 203413
TYCHO-2 2000TYC 8818-760-1
USNO-A2.0USNO-A2 0300-37182437
HIPHIP 105675

→ Request more catalogs and designations from VizieR