Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

HD 140177


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Comparative statistics and origin of triple and quadruple stars
The statistics of catalogued quadruple stars consisting of two binaries(hierarchy 2 + 2), is studied in comparison with triple stars, withrespective sample sizes of 81 and 724. Seven representative quadruplesystems are discussed in greater detail. The main conclusions are asfollows. (i) Quadruple systems of ? Lyr type with similar massesand inner periods are common, in 42 per cent of the sample the outermass ratio is above 0.5 and the inner periods differ by less than 10times. (ii) The distributions of the inner periods in triple andquadruple stars are similar and bimodal. The inner mass ratios do notcorrelate with the inner periods. (iii) The statistics of outer periodsand mass ratios in triples and quadruples are different. The medianouter mass ratio in triples is 0.39 independently of the outer period,which has a smooth distribution. In contrast, the outer periods of 25per cent quadruples concentrate in the narrow range from 10 to 100yr,the outer mass ratios of these tight quadruples are above 0.6 and theirtwo inner periods are similar to each other. (iv) The outer and innermass ratios in triple and quadruple stars are not mutually correlated.In 13 per cent of quadruples both inner mass ratios are above 0.85(double twins). (v) The inner and outer orbital angular momenta andperiods in triple and quadruple systems with inner periods above 30dshow some correlation, the ratio of outer-to-inner periods is mostlycomprised between 5 and 104. In the systems with small periodratios the directions of the orbital spins are correlated, while in thesystems with large ratios they are not. The properties of multiple starsdo not correspond to the products of dynamical decay of small clusters,hence the N-body dynamics is not the dominant process of theirformation. On the other hand, rotationally driven (cascade)fragmentation possibly followed by migration of inner and/or outerorbits to shorter periods is a promising scenario to explain the originof triple and quadruple stars.

The chemical evolution of the solar neighborhood. I - A bias-free reduction technique and data sample
The possible ways of measuring the age-metallicity relation for thegalactic disk in the neighborhood of the sun are discussed. It is shownthat the use of a field star sample chosen on the basis of effectivetemperature introduces a bias which results in a monotonic increase inthe metal abundance of the disk with time. However, if theage-metallicity relation for the disk can be shown to satisfy certaincriteria, the bias introduced in such a sample can be neglected: thegalactic disk apparently satisfies the criteria. It is concluded that asample analyzed through the use of uvby and H(beta) photometry inconjunction with a self-consistent set of theoretical isochronesprovides the least biased, most accurate estimate of the age-metallicityrelation for the disk.

Estimation of spectral classifications for bright southern stars with interesting Stromgren indices
This paper investigates the degree of success with which uvby photometrycan be applied to predict spectral classifications for 947 A, F, and Gstars brighter than an apparent magnitude of 8.3 and with four-colorindices indicating some kind of interesting, unusual, or peculiarspectrum. One or several possible spectral classifications are estimatedfor each star from photometry alone, double stars are distinguished, andthe estimates are compared with published classifications. The resultsshow that the framework provided by uvby photometry can be extended toinclude most G and K stars, reddened stars, peculiar stars, and certaintypes of double star.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Norma
Right ascension:15h45m12.49s
Declination:-58°40'59.4"
Apparent magnitude:8.054
Distance:450.45 parsecs
Proper motion RA:9
Proper motion Dec:-1.3
B-T magnitude:8.462
V-T magnitude:8.088

Catalogs and designations:
Proper Names   (Edit)
HD 1989HD 140177
TYCHO-2 2000TYC 8708-1923-1
USNO-A2.0USNO-A2 0300-24534128
HIPHIP 77156

→ Request more catalogs and designations from VizieR